打开黑箱:机器学习模型的可解释性技术
刷 TDS(TowardDataScience.com) 和统计之都发现三个好东西: - 从任何机器学习模型中抽取人类可理解的洞察(Extracting human understandable insights from any Machine Learning model,作者 Parul Pandey),文章介绍了最为常用的 Permutation Importance, Partial Dependence Plots, SHAP values,Advanced Uses of SHAP Values 四种方法; - 可解释的机器学习指南(Guide to Interpretable Machine Learning,作者 Matthew Stewart, PhD Researcher),主要讲可视化,相对更加专业。 - Christoph Molnar 的新书 Interpretable Machine Learning,该书籍对机器学习可解释性有较为系统的介绍。 最近没时间仔细学习,故快速浏览了一下两篇文章和这本书目录,以 [1]、[2]、[3 ] 分别标注来源作简单小结,以备后用。